2021年6月4日 TMTに向けた開発ミニワークショップ

Second-Earth Imager for TMT (SEIT) 実現に向けた 高コントラスト観測システムの開発

村上尚史(北海道大学), 山本広大(京都大学), 小谷隆行(ABC/国立天文台), 河原創(東京大学), 田村元秀(東京大学/ABC/国立天文台), SEICA & SEITメンバ

謝辞: TMT戦略基礎開発研究経費では、主に以下の研究開発を推進しました。ご支援に厚くお礼申し上げます。

- せいめい望遠鏡SEICAへのコロナグラフSPLINE搭載実機開発
- ・ 将来の高コントラスト観測技術(ポストプロセス技術など)の基礎研究

SEIT (Second-Earth Imager for TMT) の提案 → PSI-blueへ合流

- 構成:極限補償光学・コロナグラフ・ポストプロセス系
- 装置性能: 主星から離角0".01-0".02でコントラスト 10-8
- 主要なサイエンス目標:
 - ・ 晩期型星ハビタブルゾーンに存在する地球型惑星 の直接観測およびキャラクタリゼーション
 - e.g., O₂はロバストなバイオシグネチャーと期待

✓ 大気揺らぎに起因する天体光波面を測定・補正

✓ コントラストのさらなる改善

✓ 主星(恒星)光を 強力に除去

Thirty Meter Telescope (D = 30m)

✔ 惑星光の分析

Post-process system

SEICA (Second-generation Exoplanet Imager with Coronagraphic Adaptive Optics)

- 京都大学せいめい望遠鏡(口径3.8m)
 - TMTと同じ分割主鏡(18枚)、アクセスが容易
- ・ 極限補償光学・高コントラスト装置SEICA → 2022年度FL目標
 - サイエンス目標: 木星質量の惑星 (> 0".2) の直接観測・キャラクタリゼーション (YJH bands, goal 10^{-5~-6})
 - 技術目標: TMTでの惑星撮像装置に向けた先進技術の開発・実証
 - 分割主鏡に特化した高性能コロナグラフ
 - 高速変動する大気揺らぎの精密測定・補正 ・・など

From Kyoto Univ. SEIMEI Telescope Website http://www.kusastro.kyoto-u.ac.jp/psmt/

Marois et al. (2010), Nature, 468, 1080

SEICAの開発体制

- ◆主に5機関/10名でそれぞれ開発進行中
 - ◆ 補償光学

- 全体光学系: 京都大学
- 新方式波面センサ: 京都大学
- FPGA制御装置: 大阪電気通信大学

- ◆ コロナグラフ
- ◆ ポストコロナグラフ
- コロナグラフ系: 北海道大学
- <u>スペックルナリング: 北海道大学</u>
- 惑星RV分光器: 東京大学/ABC

2020年度末

2021年度末

◆ 開発場所: 京都大学 → せいめい望遠鏡ドーム

要素技術等の主な開発拠点

SEICA全体図

SPLINE (Savart-Plate Lateral-shearing Interferometric Nuller for Exoplanets)

- コロナグラフSPLINEの特長
 - シンプル・高安定な光学系(機械的稼働部がない)
 - アクロマティックな恒星除去(波長依存性が(少)ない)
 - 任意の望遠鏡瞳に対応可能(<u>分割主鏡に適応可能</u>)
 - 恒星のごく近傍に迫れる(小さなIWAを実現可能)→1.5λ/Dに設定(下表)

 $IWA = \lambda/(4s)$

	SEICA	SEIT/TMT
IWA	0".10	0".012
D	3.8m	30m
S	0.64m	5.1m

SEICA搭載用2チャンネルSPLINEの提案

偏光分離プリズムを用いた2チャンネル構成 → 光量スループット向上

偏光プリズム製作/収差解析

偏光プリズム 製作完了

収差の影響は十分に小さい

図 14 射出瞳の収差($\lambda = 1.00 \, \mu \, \text{m}$ 、 $1.25 \, \mu \, \text{m}$ 、 $1.65 \, \mu \, \text{m}$ 、 $1.90 \, \mu \, \text{m}$)

SPLINE/SEICA仮組み

アライメント用望遠鏡 (Borg 77ED II):

射出光線が平行になるように(すべての像が同じ位置に重なるように)、各プリズムをアライメント

要求アライメント精度の評価/室内実証試験

アライメント精度評価

各プリズムのアライメント誤差

天体光波面傾斜 or 偏光制御誤差

SPLINEコントラスト劣化

目標コントラスト (ピーク)	10 ^{-1.5}
サバール板 (Y軸回り)	±0.22分角
プリズム①② (Y軸回り・相対位置)	±1.94分角
プリズム①(z軸回り)	±135分角
プリズム②(z軸回り)	±99分角

実証試験結果(瞳面観測)

Laser ($\lambda = 670$ nm)

Xenon lamp ($\lambda \sim 500-700 \text{ nm}$)

目標コントラスト(10-1.5) クリア

黒田真之佑, 村上尚史, 他, 日本天文学会2016年秋季年会V235a

安定性・環境温度依存性の評価

■ SPLINEコントラスト劣化(変動)の要因 温度変動によるホルダのたわみ → SPLINEへ入射する天体光波面にtiltがつく?

ホルダ・調整機構・アセンブル

偏光分離プリズム

+ リレーレンズ製造完了

Lyotストップ設計

・ Lyotストップ

- 光波干渉が起きない部分(白い領域)をブロックすることで、原理上、恒星光を 完全に除去
- 厳密解をに設計・評価(FY2017) → 簡略型を検討 (FY2019)

京大岡山3.8m望遠鏡瞳

横方向分離

縱方向分離

SPLINE射出瞳像(計算值)

Lyotストップ設計・製作

せいめい望遠鏡瞳

せいめい望遠鏡瞳を 模擬した光学マスク (2018年度製作)

Lyotストップ厳密解 ^{黒田真之佑, 2017年度修士論文}

簡略型Lyotストップ

吉田光希, 2019年度修士論文

SPLINE出力(実験)

恒星像(シミュレーション)

目標コントラスト(10^{-1.5}) クリアの見通し → Lyotストップ製作完了(2020年2月)

SEICA/SPLINEアセンブル

SEICA/SPLINEアセンブル

FY2019までの開発項目

- SPLINEモジュール化
 - 光学系全体をベース板に 設置
- リレーレンズ系アセンブル
 - ホルダ・マウント類の製作 を含む
 - 集光レンズ・コリメータレン ズは2018年度に製作済み
- <u>瞳モニター導入</u>を決定(Lyotストップ設置用)

・ FY2021年度(以降)の開発項目

- 瞳モニタ系(機械系・光学系) 製作
- 温度安定化カバー製作
- ExAO撮像モード (w/o SPLINE) の検討
- SEICA接続に向けた準備(京都 大学へ移送など)

TMTに向けて検討・開発中の先端進技術の例

- 極限補償光学
 - FPGAによる補償光学制御
 - 直接位相計測型波面センサ
- ・コロナグラフ
 - ナル干渉型コロナグラフSPLINE
 - 焦点面位相マスクコロナグラフ
- ・ポストプロセス
 - スペックルナリング、焦点面波面センシング、 惑星RV高分散分光器、差分撮像技術
 - ・・・など

まとめ

TMT戦略経費での活動

- せいめい望遠鏡SEICA搭載を目指したSPLINEの開発
 - TMTと同様の分割主鏡で有効、小IWAを目指せるなどの利点
 - [完了] 偏光プリズム製作、アライメント精度要求の見積もり、光学収差解析、装置仮組み、Lyotストップ設計・製作など
 - [推進中] レンズ系構築、SPLINE実機モジュール化 など
 - [今後] 瞳モニタ構築、ExAO撮像モード検討、モジュール化完了・京都大学へ移送、極限補償光学との接続、ファーストライト(2022年度目標)
- ポストプロセス技術開発
 - •例: SLMを用いたスペックルナリング技術の基礎研究

・せいめい望遠鏡/SEICAでの目標

- サイエンス目標: 木星質量惑星の直接観測・キャラクタリゼーション
- ◆技術目標:TMTでの惑星撮像装置に向けた先進技術の開発・実証

謝辞: TMT戦略基礎開発研究経費のご支援に、厚くお礼申し上げます。