2021年6月4日 TMTに向けた開発ミニワークショップ

Second-Earth Imager for TMT (SEIT) 実現に向けた 高コントラスト観測システムの開発

<u>村上尚史(北海道大学)</u>,山本広大(京都大学),

小谷隆行(ABC/国立天文台),河原創(東京大学),

田村元秀(東京大学/ABC/国立天文台), SEICA & SEITメンバ

謝辞: TMT戦略基礎開発研究経費では、主に以下の研究開発を推進しました。ご支援に厚くお礼申し上げます。

- せいめい望遠鏡SEICAへのコロナグラフSPLINE搭載実機開発
- 将来の高コントラスト観測技術(ポストプロセス技術など)の基礎研究

SEIT (Second-Earth Imager for TMT)の提案→PSI-blueへ合流

- 構成: 極限補償光学・コロナグラフ・ポストプロセス系
- 装置性能: 主星から離角0".01-0".02でコントラスト 10-8
- ・ 主要なサイエンス目標:
 - ・ 晩期型星ハビタブルゾーンに存在する地球型惑星の直接観測およびキャラクタリゼーション
 - e.g., O₂はロバストなバイオシグネチャーと期待

大気

揺らぎ

SEICA (Second-generation Exoplanet Imager with Coronagraphic Adaptive Optics)

- 京都大学せいめい望遠鏡(口径3.8m)
 - <u>TMTと同じ分割主鏡(18枚)、アクセスが容易</u>
- 極限補償光学・高コントラスト装置SEICA → 2022年度FL目標
 - サイエンス目標:木星質量の惑星 (> 0".2)の直接観測・キャラクタリゼー ション (YJH bands, goal 10^{-5~-6})
 - 技術目標: TMTでの惑星撮像装置に向けた先進技術の開発・実証
 - 分割主鏡に特化した高性能コロナグラフ
 - 高速変動する大気揺らぎの精密測定・補正・・など

From Kyoto Univ. SEIMEI Telescope Website http://www.kusastro.kyoto-u.ac.jp/psmt/

Marois et al. (2010), Nature, 468, 1080

SEICAの開発体制

◆主に5機関/10名でそれぞれ開発進行中

◆ 補償光学	 全体光学系: 新方式波面センサ: FPGA制御装置: 	京都大学 京都大学 大阪電気通信大学
🔶 コロナグラフ	■ <u>コロナグラフ系:</u>	北海道大学
🔷 ポストコロナグラフ	■ <u>スペックルナリング:</u>	北海道大学
	■ 惑星RV分光器:	東京大学/ABC

2020年度末 2021年度末

◆開発場所:京都大学 → せいめい望遠鏡ドーム

要素技術等の主な開発拠点

資料: Courtesy of 山本広大(京都大学)

SEICA全体図

SPLINE (Savart-Plate Lateral-shearing Interferometric Nuller for Exoplanets)

• コロナグラフSPLINEの特長

- シンプル・高安定な光学系(機械的稼働部がない)
- アクロマティックな恒星除去(波長依存性が(少)ない)
- 任意の望遠鏡瞳に対応可能(<u>分割主鏡に適応可能</u>)
- 恒星のごく近傍に迫れる(小さなIWAを実現可能) → 1.5λ/Dに設定(下表)

SEICA搭載用2チャンネルSPLINEの提案

偏光分離プリズムを用いた2チャンネル構成 → 光量スループット向上

偏光プリズム製作/収差解析

SPLINE/SEICA仮組み

アライメント用望遠鏡 (Borg 77ED II): 射出光線が平行になるように(すべての像が同じ位置に重なるように)、各 プリズムをアライメント

要求アライメント精度の評価/室内実証試験

アライメント精度評価

実証試験結果(瞳面観測)

目標コントラスト (ピーク)	10 ^{-1.5}
サバール板 (Y軸回り)	±0.22分角
プリズム①② (Y軸回り・相対位置)	±1.94分角
プリズム①(z軸回り) プリズム②(z軸回り)	±135分角 ±99分角

黒田真之佑,村上尚史,他,日本天文学会2016年秋季年会V235a

Laser (λ = 670nm)

Contrast (PSF peak): 6.0×10^{-3}

Xenon lamp ($\lambda \sim 500-700$ nm)

Contrast (PSF peak): 1.7×10^{-2}

安定性・環境温度依存性の評価

黒田真之佑,村上尚史,他,日本天文学会2017年秋季年会

ホルダ・調整機構・アセンブル

偏光分離プリズム

Lyotストップ設計

- Lyotストップ
 - 光波干渉が起きない部分(白い領域)をブロックすることで、原理上、恒星光を 完全に除去
 - 厳密解をに設計・評価(FY2017) → 簡略型を検討 (FY2019) •

京大岡山3.8m望遠鏡瞳

Lyotストップ設計・製作

目標コントラスト(10^{-1.5}) クリアの見通し → Lyotストップ製作完了(2020年2月)

SEICA/SPLINEアセンブル

SEICA/SPLINEアセンブル

- ・ FY2019までの開発項目
 - <u>SPLINEモジュール化</u>
 - ・ 光学系全体をベース板に 設置
 - リレーレンズ系アセンブル
 - ホルダ・マウント類の製作 を含む
 - 集光レンズ・コリメータレン ズは2018年度に製作済み
 - <u>瞳モニター導入</u>を決定(Lyotス トップ設置用)

• FY2021年度(以降)の開発項目

- 瞳モニタ系(機械系・光学系)
 製作
- 温度安定化カバー製作
- ExAO撮像モード (w/o SPLINE) の検討
- <u>SEICA接続に向けた準備(京都</u> 大学へ移送など)

From TDM

TMTに向けて検討・開発中の先端進技術の例

まとめ

・TMT戦略経費での活動

- ・ せいめい望遠鏡<u>SEICA搭載を目指したSPLINEの開発</u>
 - ・<u>TMTと同様の分割主鏡で有効、小IWAを目指せる</u>などの利点
 - ・[完了] 偏光プリズム製作、アライメント精度要求の見積もり、光学収差 解析、装置仮組み、Lyotストップ設計・製作など
 - ・[推進中]レンズ系構築、SPLINE実機モジュール化 など
 - ・[今後] 瞳モニタ構築、ExAO撮像モード検討、モジュール化完了・京都 大学へ移送、極限補償光学との接続、ファーストライト(2022年度目標)
- ・<u>ポストプロセス技術開発</u>
 - ・例: SLMを用いたスペックルナリング技術の基礎研究

・せいめい望遠鏡/SEICAでの目標

- ・サイエンス目標:木星質量惑星の直接観測・キャラクタリゼーション
- ▶ •技術目標:<u>TMTでの惑星撮像装置に向けた先進技術</u>の開発・実証

謝辞: TMT戦略基礎開発研究経費のご支援に、厚くお礼申し上げます。