共同研究契約報告書

平成31年4月24日

平成30年5月25日付

「TMT中間赤外10-20 μ m高分散分光用CdZnTeイマージョングレーティングの開発」研究代表者:

東京大学大学院理学系研究科・准教授・小林 尚人上記共同研究契約について、下記のとおり報告いたします。

住 所:東京都文京区本郷 7-3-1

名 称:国立大学法人東京大学

代表者:総長 五神 真

代理人

理学系研究科等事務部長 生田目 金雄 印

記

- 1. 成果報告書 (別紙のとおり)
- 2. 使用実績報告書(別紙のとおり)

以上

1. 研究の実績

(1)研究の実施日程

研究項目				実	j	施	日		程			
	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
1) 試験用小型CdZnTe イマージョンの製作				←→ :	グレーテ			タ検討 ング設計		子製作	→	
2) グレーティング回折 効率の測定(常温)											•	

(2)研究の成果の説明

本研究は、2年計画で、多数の分子・原子ラインが密集する中間赤外線「長波長域」($10-20\,\mu\,\mathrm{m}$)の高分散素子として最も有望なCdZnTe製イマージョングレーティングの試作品を製作し、低温で性能評価することを目的とする。本研究により、近赤外から中間赤外の全赤外線波長域をカバーするラインナップを完成させ、TMT赤外線高分散分光に完全に備えることが広い意味での目的となる。

我々は $10-20\,\mu$ mを十分に透過する赤外線結晶としてCdZnTe(屈折率n~2.6)を特定し、すでに十分な形状精度(理論限界の相対回折効率値)を出すグレーティング機械加工に成功している。そこで、1年目となる今年度は、(1)試験用小型CdZnTeイマージョンの製作、(2)グレーティング回折効率の測定(常温)、を計画し、まず常温におけるグレーティングの絶対回折効率を測定することでコーティングの性能評価を目標とした。それぞれの達成状況を以下に記す。

1) 試験用小型CdZnTeイマージョンの製作

グレーティングのパラメータとして、ブレーズ角75度、溝ピッチ82.04 μ m、頂角89度、底辺長50 μ m、と設定した。ブレーズ角は、これまでの我々の開発から見出したエシェルフォーマットのよいバランス(波長分解能、波長カバレッジ、解析のし易さ)が取れる値である。溝ピッチは、ピクセルサイズ30 μ mの2 μ mの2 μ mの2 μ mでかた場合に、10 μ m帯を3 μ mが取れる値である。清ピッチは、ピクセルサイズ30 μ mの2 μ mの

2) グレーティング回折効率の測定(常温)

最も厳しい精度を要求する最短波長域(4μ m)においてグレーティングの絶対回折効率を測定し、TE、TMの両偏向モードともにピーク効率~74%を得た。CdZnTeは波長 5μ m以下において僅かではあるがイマージョン応用としては無視できない吸収(波長 4μ mにおける吸収係数3.05e-2 cm⁻¹、本測定条件でのCdZnTeの透過率~93%)があり、その吸収がない場合の絶対回折効率は~80%と計算される。相対回折効率の理論限界値は約80%であることから、設計通り、かつ測定波長ではほぼ理論限界のコーティングを実現し、本研究の目標を十分に達成したと言える。