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Discoveries of Extrasolar Planets (Exoplanets)

FIRST EXOPLANET

©JPL/NASA

Mayor & Queloz 1995 THE NOBEL PRIZE
IN PHYSICS 2019
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The first discovery of a gas giant planet orbiting around other Sun-like star
The radial velocity (i.e., wobble) of a star caused by a planet was observed

The unexpected presence of a hot Jupiter surprised the community!



Fundamental questions:

When, Where, and How Do Planets Form?



e.g., Hayashi 1981
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Adapted from https://www.youtube.co m/watch?v=sCKkhEu3lYNcm



State-of-the Art: Disk Observations

When Where How
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e.g., Pfalzneretal 2022
The lifetime of protoplanetary disks Gaps can be opened by Halpha emission comes from

is typically about 1-10 Myr embeded, forming planets accreting giant planets



State-of-the Art: Exoplanet Population

10,000 F T T T
Ir 1
®g o4 o o ° Exoplanet h
o8 S So . xoplanets are everywhere
I'::a @
1,000 ] @ E
: . . _
o o» 8 Jupiter ] Planet formation is ubiquitous
=
a 100 ¢ ® Saturn E
E r
i
E Accretion of gas and solids
=S 1 .
Uranuse *Neptune leads to a wide mass range
10 . -
- @ Doppler
& Transit
2 Microlensi . .
o e Orbital evolution
Earth Imaging | )
! Venuse * ® Timing E plays an important role
i i i i i | i L R | i i i 1 5 5§l
0.0 .10 1.00 10,00 10000

Orbital dis AU
e.g., Winn & Fabrycky 2015 ' tance (AU)



State-of-the Art: Exoplanet Composition

How Where & How
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Planets with radius of < 1.8 R_Earth
are likely rocky Some sub-Neptune planets are volatile rich



State-of-the Art: Exoplanet Climate & Habitability

® Data Best-fit Mode

JWST: K2-18b — sub-Neptune Methane _  Dimethyl Carbon Dimethyl
Carbon CH, 2 Sulfide Dioxide 2and Sulfide
DiOXide DMS LO_ DMS
Methane Methane Methane [010)
CH, CH, CH,

Wavelength of Light
Madhusudhan et al 2023, 2025

Characterization of exoplanet atmospheres can infer climate and even habitability of exoplanets



Fundamental questions:

When, Where, and How Do Planets Form?



Beyond State-of-the Art: Discovery-Based

Disks

ALMA Partnership 2015

Resolve inner disks
Gas kinematics

Multi-wavelength

Population

Planet mass (Mg)

Orbital distance (AU)

e.g., Winn & Fabrycky 2015

Characterization

Madhusudhan et al 2023, 2025

Low-mass planets including habitable planets

Distant planets

Young planets

Multi-wavelength

More atoms/molecules



Beyond State-of-the Art: Discovery-Based

Disks Population Characterization

high spatial and high spectral resolutions are key
while setting more specific goals is preferred

Resolve inner disks Low-mass planets including habitable planets

Gas kinematics Distant planets Multi-wavelength

Multi-wavelength Young planets More atoms/molecules



Beyond State-of-the Art: Hypothesis-Based

Disks Population Characterization

Planet mass (Mg)

Wavelength of Light
nicror

ALMA Partnership 2015 | o owesen | Madhusudhan et al 2023, 2025
e.g., Winn & Fabrycky 2015

Did Low-mass planets including habitable planets form by

Are inner disk properties set in-situ or gas-induced migration?

by disk winds or turbulence?

Is the current properties of molecular abundance determined by
equilibrium or non-equilibrium chemistry?



Beyond State-of-the Art: Hypothesis-Based

Disks Population Characterization

The specs of telescopes/observations are derived
from science requirements

Did Low-mass planets including habitable planets form by

Are inner disk properties set in-situ or gas-induced migration?

by disk winds or turbulence?

Is the current properties of molecular abundance determined by
equilibrium or non-equilibrium chemistry?



Key Science Cases for TMT
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Science Requirements for TMT

Science cases ' Instrument specs

from the community . =
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Some numbers...

First Light Instruments

IRIS

1 as FoV @ 150 pc => 150 au
R~10%4 => Deltav~ 30 km/s

MODHIS
10 mas @ 150 pc=>1.5au

R~10"5=> Deltav~3km/s

1 micron => 3000K 1 micron => 3000K

First Decade Instruments

PSI MICHI

5mas @ 10 pc =>0.05au
R<10"5=> Deltav~3km/s

10 mas@ 150 pc=>1.5au
R<10"5=> Deltav~3km/s

10 micron => 300 K

Contrast ratio~ 10"*-8-10"-9

Key physical quantities
v_Kep @1au=>30km/s RV of10cm/s can be achieved by R~10"5 Contrast ratio of Jupiter~ 10"-9



Synergy with Other Telescopes

JWST

Roman Space
Telescope

HWO

Ch#3 Chi#4 Chi#5 Ch#6 Chi#7 Chi#l1
Fund. Physics |  Early Galaxy SMBH MW and Our Solar
and Cosmology|  Universe S LT Nearby System
Synergy the IGM
ALMA
GAIA

https://www.tmt.org/download/Document/10/original

TMT will be very versatile and provide complementary observations

Proposing science cases unique to TMT and a next-generation of instruments
can enhance the importance of TMT



TMT-ACCESS Workshop

What is the TMT-ACCESS?

Il TMT YA T AT —ADEE &« TMT RiERKEBEDRE
=B E L BFEFIDO TMT Workshop Series

e 5 V52 § S
T EFiEETEY T4 ARAhYyavVER HFH —IVIZTOD
HEERE

©Rieko Momose



TMT-ACCESS Workshop

Former workshops
Our Activities: TMT-ACCESS
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TMT-ACCESS Workshop

Next 2025
TMT-ACCESS

TMT eArly Career Centered,
Engineers-Scientists Synergy

will be at
NAOJ, July 16-18

tmt-access@ml. nao.ac.jp
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(CSU Northridge) (NAOJ) (BMAZE) (NAOJ) (ISAS/JAXA) (ISAS/JAXA) (RRAZF) (JPL) (Carnegie) (ABC/NAOJ) (NAOJ)

[N A

©Rieko Momose



* Planet formation and exoplanets are timely in astrophysics today
* Tremendous amounts of progresses have been made

* The origins of planets — especially habitable planets — remain
unclear

* High sensitive observations with high spatial and high spectral
resolutions can advance the fields significantly

 TMT will be very versatile and can play such arole

* Due to complementarity of TMT observations, proposing science
cases unique to TMT and a next-generation of instruments would
be key

* Participation of the TMT-ACCESS workshop is a great opportunity
and highly encouraged
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